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Concept of Experimental Accuracy and
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The concept of experimental accuracy is investigated in the context of the unbiased
joint measurement processes defined by Arthurs and Kelly. A distinction is
made between the errors of retrodiction and prediction. Four error±disturbance
relationships are derived, analogous to the single error±disturbance relationship
derived by Braginsky and Khalili in the context of single measurements of position
only. A retrodictive and a predictive error±error relationship are also derived.
The connection between these relationships and the extended uncertainty principle
of Arthurs and Kelly is discussed. The similarities and differences between the
quantum mechanical and classical concepts of experimental accuracy are explored.
It is argued that these relationships provide grounds for questioning Uffink’ s
conclusion that the concept of a simultaneous measurement of noncommuting
observables is not fruitful.

1. INTRODUCTION

Notwithstanding the fundamental importance of the uncertainty princi-

ple, there is still, as Hilgevoord and Uffink (1990) have remarked, a great
deal of discussion about what it actually says. The purpose of this paper is

to add a few additional points to the discussion. We are particularly concerned

with the idea that the uncertainty principle represents a constraint on the

accuracy achievable in a simultaneous measurement of position and

momentum.

The form of the uncertainty principle given in most modern textbooks
is the inequality

1 Department of Physics, Queen Mary and Westfield College, London E1 4NS, U.K.; e-mail
D.M.Appleby@quw.ac.uk.

1491

0020-7748/98/0500-149 1$15.00/0 q 1998 Plenum Publishing Corporation



1492 Appleby

D x D p $
"
2

(1)

where the quantities D x, D p are defined in terms of the state of the system

| c & by

D x 5 ! ^ c | xÃ2 | c & 2 ^ c | xÃ| c & 2 D p 5 ! ^ c | pÃ2 | c & 2 ^ c | pÃ| c & 2 (2)

The first general proof of inequality (1) was actually given by Kennard

(1927), not Heisenberg. We will accordingly refer to this form of the uncer-
tainty principle as Kennard’ s inequality.

The proof of Kennard’ s inequality is based on the fact that ^ p | c & is the

Fourier transform of ^ x | c & . In his original paper, and again in his Chicago

lectures, Heisenberg (1927, 1930) also gave another, quite different argument

involving a g -ray microscope. On the basis of this argument he interpreted

D x and D p as experimental errors or inaccuracies . He thereby suggested that
the uncertainty principle should be understood to mean, in the words of Bohm

(1951), ª If a measurement of position is made with accuracy D x, and if a

measurement of momentum is made simultaneously with accuracy D p, then

the product of the two errors can never be smaller than a number of order

" º (Bohm’ s emphasis). Heisenberg himself did not state the matter quite so
plainly; however, one has the impression that he would have concurred with

the above statement of Bohm’ s had it been put to him. The question arises:

is this a valid interpretation of Kennard’ s inequality? The question has been

discussed by Ballentine (1970), WoÂdkiewicz (1987), Hilgevoord and Uffink

(1990), Raymer (1994), and de Muynck et al. (1994). We will here confine

ourselves to remarking that the quantities D x and D p defined by Equations
(2) cannot be interpreted as experimental errors in anything like the normal

sense of the word because they only depend on the state | c & . They are thus

intrinsic properties of the isolated system. An experimental error, by contrast,

ought to depend on the state of the measuring apparatus, as well as the state

of the system. In other words, it should partly depend on quantities which

are extrinsic to the system.
Suppose that in Heisenberg’ s microscope gedanken experiment, one

were to make the microscope go out of focus. This should have the effect

of increasing the error in the measurement of x. But it will have no effect

on the quantity D x, since this only depends on the initial state of the particle

whose position is being measured.

These considerations do not mean that the statement of Bohm’ s quoted
above is incorrect. They do, however, mean that it is not a consequence of

the inequality proved by Kennard. Rather, it represents (if true) an independent

physical principle. For the sake of distinctness let us give it a name: the

error principle.
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The problem we now face is that whereas there exists a rigorous mathe-

matical proof of Kennard’ s inequality, the status of the error principle is much

more ambiguous. Indeed, the very meaning of the concepts involvedÐ the
concept of a simultaneous measurement of position and momentum, and the

concept of experimental accuracyÐ continues to be the subject of discussion.

One approach to the problem is that based on the concept of a ª fuzzyº

or ª stochasticº measurement, due to Prugovec
Æ
ki (1984), Holevo (1982), Busch

and Lahti (1984), Martens and de Muynck (1992), de Muynck et al. (1994),

and others [for additional references see the works just cited and Uffink
(1994)]. Uffink (1994) has identified a number of objections to this approach.

His conclusion is ª that the claim that within this formalism a joint unsharp

measurement of position and momentum . . . is possible is falseº . Moreover,

he doubts whether matters could be remedied by adopting a different approach.

He considers that ª the formalism of quantum theory, as presented by von

Neumann, simply has no room for a description of a point measurement of
position and momentum at allº Ð not even a less than perfectly accurate

joint measurement.

We acknowledge the force of Uffink’ s arguments. Nevertheless, we are

unwilling to accept his analysis as the last word on the subject. In the first

place, ordinary laboratory practice depends on the assumption that it is possi-
ble to make simultaneous, imperfectly accurate determinations of the position

and momentum of macroscopic objects. If it is true that quantum mechanics

does not allow for the existence of such measurements, then one of two

things would seem to follow: either normal laboratory practice is based on

a misconception, in which case much of the evidential basis for modern

physics (including quantum mechanics) would simply collapse; or else quan-
tum mechanics does not apply on the macroscopic scale. In short, Uffink’ s

conclusion has some fairly momentous consequences. This is not, of course,

a reason for rejecting Uffink’ s conclusion. It is, however, a reason for reexam-

ining the question, to see if there is some way of avoiding his conclusion.

In the second place, a number of authors (Arthurs and Kelly, 1965;

Braunstein et al., 1991; Stenholm, 1992; Leonhardt and Paul, 1993; ToÈ rma
et al., 1995) have described several specific processes which might be

described (and which they do describe) as simultaneous measurements of

position and momentum. Their work is logically independent of the work

criticized by Uffink, and it is therefore not open to the same objections.

Indeed, Uffink explicitly states that he does not mean to impugn the approach

of these authors (although he does question whether it is ª fruitfulº to interpret
the processes they describe as simultaneous measurements of noncommut-

ing observables).

Within the context of their approach Arthurs and Kelly (1965) have

derived an ª extendedº or ª generalizedº uncertainty principle (also see WoÂdkie-
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wicz, 1987; Arthurs and Goodman, 1988; Raymer, 1994; Leonhardt and Paul,

1995). Let D m Xf (respectively D m Pf ) be the standard deviation for the outcome

of the measurement of xÃ(respectively pÃ). Then, subject to certain restrictive
assumptions regarding the nature of the measurement process, Arthurs and

Kelly show

D m Xf D m Pf $ " (3)

where we have employed a different notation from that of Arthurs and Kelly

(the reasons for this notation will become clear in the next section).

The quantities D m Xf and D m Pf are not interpretable as experimental
errors. However, they do depend on the initial state of the apparatus, as well

as the initial state of the system. Moreover, the increase in the lower bound

set by inequality (3) as compared with Kennard’ s inequality can be taken as

a quantitative indication of the noise introduced by the measurement. So,

although this relation cannot be regarded as a quantitative expression of the

error principle (the statement of Bohm’ s quoted above), it may at least be
regarded as a step in that direction.

Another relation relevant to our problem is the one derived by Braginsky

and Khalili (1992), in the context of single measurements of position only.

Braginsky and Khalili define a quantity D xmeasure, representing the error in

the measurement of xÃ, and a quantity D pperturbation , representing the disturbance

of the conjugate quantity pÃ, and they show

D xmeasure D ppertubation $
"
2

(4)

provided that the measurement is of the special kind which they describe as

linear. Their inequality does not refer to simultaneous measurements of posi-

tion and momentum, and only one of the two quantities on the left-hand side

is interpretable as an experimental error. However, its existence encourages

us to believe that a similar approach might prove fruitful in the problem of

interest here.
The purpose of this paper is to combine and to develop the approaches

of Arthurs and Kelly on one hand and of Braginsky and Khalili on the other

in an attempt to find a precise, quantitative expression of the error principle

as stated by Bohm in the passage quoted above.

The result of our analysis is to show that there are in fact two different

error principles, corresponding to the predictive and retrodictive aspects of
a measurement process as discussed by Hilgevoord and Uffink (1990) (also

see Prugovec
Æ
ki, 1973, 1975). In addition, we derive four error±disturbance

relationships (in place of the single relationship derived by Braginsky and

Khalili).
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The six inequalities which we derive in the following sections, together

with Kennard’ s inequality, gives a total of seven inequalities. If our analysis

is correct all of these inequalities are needed to capture the full intuitive
content of Heisenberg’ s original paper.

2. THE ARTHURS± KELLY PROCESS

We begin by considering a specific example of a simultaneous

measurement process, namely the process described by Arthurs and Kelly
(1965) (also see Braunstein et al., 1991; Stenholm, 1992). Suppose that

we have a system interacting with a measuring apparatus, or meter. The

system has one degree of freedom, with position xÃand conjugate momentum

pÃ. The measuring apparatus has two degrees of freedom, comprising two

pointer observables m ÃX, m ÃP with conjugate momenta p ÃX, p ÃP. The pointer
observables m ÃX, m ÃP give the result of the measurement. We have the

commutation relations

[xÃ, pÃ] 5 [ m ÃX, p ÃX] 5 [ m ÃP , p ÃP] 5 i "

these being the only nonvanishing commutators between the six operators xÃ,
pÃ, m ÃX, p ÃX, m ÃP , p ÃP .

The unitary evolution operator describing the measurement interaction is

UÃ5 exp F 2
i

"
( p ÃP pÃ1 p ÃXxÃ) G

Suppose that the system 1 apparatus composite is initially in the product
state | c ^ f ap & , where | c & is the initial state of the system and | f ap & is the

initial state of the apparatus. The probability distribution for the result of the

measurement is then given by

r ( m X, m P) 5 # dx | ^ x, m X, m P | UÃ| c ^ f ap & | 2

In order to describe the experimental errors, and the disturbance of the

system by the measurement process, it is convenient to switch to the Heisenb-

erg picture. Let 2
Ã

be any of the operators xÃ, pÃ, m ÃX, p ÃX, m ÃP , p ÃP . We then

define the initial Heisenberg picture operator 2
Ãi and final Heisenberg picture

operator Of by

2
Ãi 5 2

Ã

2
Ãf 5 UÃ² 2

Ã
UÃ
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It is readily found that

xÃf 5 UÃ² xÃUÃ5 xÃ1 p ÃP

pÃf 5 UÃ² pÃUÃ5 pÃ2 p ÃX

m ÃXf 5 UÃ² m ÃXUÃ5 m ÃX 1 xÃ1 1±2 p ÃP (5)

m ÃPf 5 UÃ² m ÃPUÃ5 m ÃP 1 pÃ2 1±2 p ÃX

p ÃXf 5 UÃ² p ÃXUÃ5 p ÃX

p ÃPf 5 UÃ² p ÃPUÃ5 p ÃP

We now define the retrodictive error operators

e ÃXi 5 m ÃXf 2 xÃi
(6)

e ÃPi 5 m ÃPf 2 pÃi

the predictive error operators

e ÃXf 5 m ÃXf 2 xÃf
(7)

e ÃPf 5 m ÃPf 2 pÃf

and the disturbance operators

d ÃX 5 xÃf 2 xÃi
(8)

d ÃP 5 pÃf 2 pÃi

The motivation for these definitions will be clearest if we think, for a moment,
in classical terms. In that case e ÃXi, e ÃPi give the difference between the final

pointer positions and the initial system observables xÃi, pÃi. In other words they

tell us how accurately the result of the measurement reflects the initial state

of the system, before the measurement was carried out, which is why we

refer to them as retrodictive error operators. On the other hand e ÃXf, e ÃPf

give the difference between the final pointer positions and the final system
observables xÃf, pÃf. They therefore tell us how accurately the result of the

measurement reflects the final state of the system, after the measurement has

been completed, which is why we refer to them as predictive error operators.

Lastly, d ÃX, d ÃP give the difference between the final system observables xÃf, pÃf
and the initial system observables xÃi, pÃi. They therefore describe the distur-

bance of the system by the measurement process.
Of course, we are actually talking about quantum mechanics, not classical

mechanics. Our definitions therefore raise some important conceptual ques-

tions. We do not wish to minimize these questions. We do, however, wish

to defer discussing them until after we have derived some quantitative formu-
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las. It is to be observed that whatever the precise conceptual or philosophical

status of the quantities just introduced, they are well defined mathematically.

In order to obtain numerical indications of the accuracy and disturbance
we take the rms values of the operators just defined. We thus have the rms

errors of retrodiction

D eix 5 ! ^ c ^ f ap | e Ã2
Xi | c ^ f ap &

(9)
D eip 5 ! ^ c ^ f ap | e Ã2

Pi | c ^ f ap &

the rms errors of prediction

D efx 5 ! ^ c ^ f ap | e Ã2
Xf | c ^ f ap &

(10)
D efp 5 ! ^ c ^ f ap | e Ã2

Pf | c ^ f ap &

and the rms disturbances

D dx 5 ! ^ c ^ f ap | d Ã2
X | c ^ f ap &

(11)
D dp 5 ! ^ c ^ f ap | d Ã2

P | c ^ f ap &

The above definitions apply to any measurement process. Let us now

specialize to the case of the Arthurs±Kelly process. Inserting (5) in the

defining equations (6)±(8) gives

e ÃXi 5 m ÃX 1 1±2 p ÃP , e ÃXf 5 m ÃX 2 1±2 p ÃP , d ÃX 5 p ÃP (12)

e ÃPi 5 m ÃP 2 1±2 p ÃX, e ÃPf 5 m ÃP 1 1±2 p ÃX, d ÃP 5 2 p ÃX

It is to be observed that the error and disturbance operators only depend on
the pointer positions and momenta. It follows that the rms errors and distur-

bances as defined by equations (9)±(11) are independent of the initial system

state. This is, of course, a peculiarity of the Arthurs±Kelly process. We do

not expect it to be true generally.

Using equations (12), we find

[ e ÃXi, e ÃPi] 5 2 i " , [ e ÃXi, d ÃP] 5 2 i " , [ d ÃX, e ÃPi] 5 2 i " (13)

[ e ÃXf, e ÃPf] 5 i " , [ e ÃXf, d ÃP] 5 2 i " , [ d ÃX, e ÃPf] 5 2 i "

these being the only nonvanishing commutation relationships between mem-

bers of the set e ÃXi, e ÃPi, e ÃXf, e ÃPf, d ÃX, d ÃP. Taking this result in conjunction with
the defining equations (9)±(11), we deduce, a retrodictive error relationship

D eix D ei p $
"
2

(14)

a predictive error relationship
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D efx D ef p $
"
2

(15)

and four error±disturbance relationships

D eix D d p $
"
2

, D ei p D dx $
"
2

, D efx D d p $
"
2

, D ef p D dx $
"
2

(16)

Equations (14) and (15) together constitute a quantitative expression of the

semiintuitive error principle, as stated by Bohm (1951) in the passage quoted
earlier. Equations (16) provide a quantitative expression of the principle that

an increased degree of accuracy in the measurement of one observable can

only be achieved at the expense of an increased degree of disturbance in the

canonically conjugate observable.

The reason one needs two inequalities to capture the full content of the

error principle is the fact that one has to distinguish the errors of prediction
from the errors of retrodiction. In classical physics it is not usually necessary

to emphasize this distinction. This is because in classical physics the distur-

bance of the system by the measurement can in principle be made negligible.

In quantum mechanics, however, the backreaction of the apparatus on the

system is very important. As a result, the distinction between the two kinds

of error is also essential. In fact, it is an immediate consequence of the
definitions that

d ÃX 5 e ÃXi 2 e ÃXf

d ÃP 5 e ÃPi 2 e ÃPf

It follows that if the disturbances cannot be assumed to be negligible, then

neither can the difference between the retrodictive and predictive errors.

The reason that there are four error-disturbance relations in our analysis,

but only one in the analysis of Braginsky and Khalili is first, that Braginsky

and Khalili do not consider simultaneous measurements of xÃand pÃand
second, that they only consider the error of retrodiction (as we have termed it).

Arthurs and Kelly consider an initial apparatus state with wave function

of the form

^ m X, m P | f ap & 5
2

! h
exp 1 2 1

l 2 m 2
X 2

l 2

h2 m 2
P 2

The reader may easily verify that for this choice of | f ap & the errors are given by

D eix 5 D efx 5
l

! 2

D ei p 5 D ef p 5
"

! 2 l
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We see that the apparatus states considered by Arthurs and Kelly minimize

both the product D eix D ei p, and the product D efx D ef p. In other words, they

maximize both the retrodictive and the predictive accuracy of the
measurement.

3. UNBIASED MEASUREMENTS

After introducing the particular process which we discussed in the last

section, Arthurs and Kelly (1965) go on to define a general class of measure-
ment processes. They show that their extended uncertainty principle, relation

(3) above, holds for every process in this class (also see Arthurs and Goodman,

1988). It is natural to ask whether the error±error and error-disturbance

relations (14)±(16) also generalize.

As before, the system is assumed to interact with a measuring apparatus
characterized by two pointer observables m ÃX, m ÃP which commute with each

other and with the observables being measured xÃ, pÃ. However, the apparatus

may now have additional degrees of freedom apart from these two.

Let UÃbe the unitary evolution operator describing the measurement

interaction, and define error and disturbance operators as in the last section.

Arthurs and Kelly assume that the evolution operator UÃand initial apparatus
state | f ap & are such that

^ c ^ f ap | m ÃXf | c ^ f ap & 5 ^ c ^ f ap | xÃi | c ^ f ap &
(17)

^ c ^ f ap | m ÃPf | c ^ f ap & 5 ^ c ^ f ap | pÃi | c ^ f ap &

uniformly, for every initial system state | c & . In our terminology this condition
amounts to the requirement that there be no systematic errors of retrodiction:

^ c ^ f ap | e ÃXi | c ^ f ap & 5 0
(18)

^ c ^ f ap | e ÃPi | c ^ f ap & 5 0

for all | c & . We will accordingly refer to such a measurement as retrodic-
tively unbiased.

It is natural also to impose the requirement that the measurement be

predictively unbiased:

^ c ^ f ap | e ÃXf | c ^ f ap & 5 0

^ c ^ f ap | e ÃPf | c ^ f ap & 5 0

for all | c & .
We now show that all six of the error±error and error±disturbance rela-

tions (14)±(16) continue to hold for every measurement which is both retrodic-

tively and predictively unbiased. We will do so by using a method similar
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to the one used by Arthurs and Kelly to prove their extended uncertainty

principle (3).

We begin with the predictive error relationship. We have

[xÃf, pÃf] 5 UÃ² [xÃ, pÃ] UÃ5 i "

This is the only nonvanishing commutator between members of the set xÃf,
pÃf, m ÃXf, m Ãpf. Therefore

[ e ÃXf, e ÃPf ] 5 [( m ÃXf 2 xÃf ),( m ÃPf 2 pÃf)] 5 i "

We deduce

D efx D efp $
"
2

We made no use of the assumption that the measurement is unbiased in

deriving this inequality. The predictive error relationship therefore holds
quite generally. The remaining relationships mix Heisenberg picture operators

defined at different times, and for these we must work a little harder.

Given an initial system state | c & , let | c 8 & 5 xÃi | c & . If the measurement

is retrodictively unbiased, we then have, from the proposition proved in

the Appendix,

^ c ^ f ap | e ÃXixÃi | c ^ f ap & 5 ^ c ^ f ap | e ÃXi | c 8 ^ f ap & 5 0 (19)

Similarly

^ c ^ f ap | xÃi e ÃXi | c ^ f ap & 5 0 (20)

and

^ c ^ f ap | e ÃXipÃi | c ^ f ap & 5 ^ c ^ f ap | pÃi e ÃXi | c ^ f ap & 5 0

^ c ^ f ap | e ÃPixÃi | c ^ f ap & 5 ^ c ^ f ap | xÃi e ÃPi | c ^ f ap & 5 0

^ c ^ f ap | e ÃPi pÃi | c ^ f ap & 5 ^ c ^ f ap | pÃi e ÃPi | c ^ f ap & 5 0

Using these equations and the definitions of e ÃXi, e ÃPi, it is readily inferred that

^ c ^ f ap | [xÃi, m ÃXf ] | c ^ f ap & 5 0, ^ c ^ f ap | [ m ÃXf, pÃi] | c ^ f ap & 5 i "
(21)

^ c ^ f ap | [xÃi, m ÃPf ] | c ^ f ap & 5 i " , ^ c ^ f ap | [ m ÃPf, pÃi] | c ^ f ap & 5 0

which, together with the fact that m ÃXf and m ÃPf commute, implies

^ c ^ f ap | [ e ÃXi, e ÃPi] | c ^ f ap & 5 ^ c ^ f ap | [( m ÃXf 2 xÃi), ( m ÃPf 2 pÃi)] | c ^ f ap &

5 2 i "

for all | c & . Consequently
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D eix D eip $
"
2

(22)

In proving this inequality, we only used the assumption that the measurement

is retrodictively unbiased. The retrodictive error relationship is therefore valid

under the same set of assumptions which Arthurs and Kelly make in order

to prove their extended uncertainty principle.

Suppose, now, that the measurement is both retrodictively and pre-
dictively unbiased. Then, by an argument similar to that used in proving

equations (21), we find

^ c ^ f ap | [xÃi, xÃf] | c ^ f ap & 5 0,

^ c ^ f ap | [xÃf, pÃi][ c ^ f ap & 5 i "

^ c ^ f ap | [xÃi, pÃf] | c ^ f ap & 5 i " ,

^ c ^ f ap | [pÃf, pÃi] | c ^ f ap & 5 0

Therefore

^ c ^ f ap | [ e Ãxi, d Ãp] | c ^ f ap & 5 ^ c ^ f ap | [( m Ãxf 2 xÃi), ( pÃf 2 pÃi)] | c ^ f ap &

5 2 i "

Similarly

^ c ^ f ap | [ e ÃXf, d ÃP] | c ^ f ap & 5 2 i "

and

^ c ^ f ap | [ e ÃPi, d ÃX] | c ^ f ap & 5 i "

^ c ^ f ap | [ e ÃPf, d ÃX] | c ^ f ap & 5 i "

Hence

D eix D d p $
"
2

, D ei p D d x $
"
2

, D efx D d p $
"
2

, D ef p D dx $
"
2

(23)

It would be interesting to see if one can remove the restriction to measurement

processes which are retrodictively unbiased [in the case of inequality (22)],

or retrodictively and predictively unbiased [in the case of inequalities (23)].

4. THE ARTHURS± KELLY PRINCIPLE AND RELATED
INEQUALITIES

For the sake of completeness we briefly indicate the connection between

the inequalities proved in the last section and the extended uncertainty princi-

ple of Arthurs and Kelly (1965).
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Suppose that the measurement is retrodictively unbiased. Then

^ c ^ f ap | m ÃXf | c ^ f ap & 5 ^ c ^ f ap | xÃi | c ^ f ap &

In view of equations (19) and (20) we also have

^ c ^ f ap | m Ã2
Xf | c ^ f ap & 5 ^ c ^ f ap | (xÃi 1 e ÃXi)

2 | c ^ f ap &

5 ^ c ^ f ap | xÃ2i | c ^ f ap & 1 ^ c ^ f ap | e Ã2
Xi | c ^ f ap &

Using equations (17) and (18), we deduce

( D m Xf)
2 5 ( D xi)

2 1 ( D eix)2 (24)

where D m Xf, D xi represent uncertainties calculated in the usual way, according

to the prescription of equation (2). Similarly

( D m Pf)
2 5 ( D pi)

2 1 ( D eip)2 (25)

We see that D eix and D ei p determine the increases in the variances of the
distribution of results, as compared with the intrinsic variances of the initial

system state.

Equations (24) and (25), together with Kennard’ s inequality (1) and the

retrodictive error relationship (22), imply

( D m Xf)
2( D m Pf)

2 5 (( D xi)
2 1 ( D eix)2)(( D pi)

2 1 ( D eip)2)

$
" 2

4
(( D xi)

2 1 ( D eix)2) 1 1

( D xi)
2 1

1

( D eix)2 2
5

" 2

4 1 2 1
( D xi)

2

( D eix)2 1
( D eix)2

( D xi)
2 2

$ " 2 (26)

which is the extended principle of Arthurs and Kelly.

If the measurement is both retrodictively and predictively unbiased we

can also prove, by a similar argument,

( D xf)
2 5 ( D xi)

2 1 ( D dx)2

(27)
( D Pf)

2 5 ( D pi)
2 1 ( D dp)2

showing how the mean square disturbances determine the extent of the
increase in the system state variances. These inequalities do not imply an

increase in the lower bound on the product D xf D pf because the disturbances

can both be made arbitrarily small (at the expense of making the measurement

very inaccurate). The lower bound for the final system state uncertainties is

therefore the same as that for the initial state ones, namely
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D xf D pf $
"
2

On the other hand, the lower bound on the products D xf D m Pf and D m Xf D pf

is larger than the one set by Kennard’ s inequality. In fact, (24), (25), and (27),
together with the error-disturbance relations (23) are readily seen to imply

D xf D m Pf $ "

D m Xf D pt $ "

5. THE QUESTION OF INTERPRETATION

We now come to the question which we have been ignoring up to now.

We have been referring to the quantities D eix, D ei p, D ef x, D ef p as experimental

errors and the quantities D d x, D d p as disturbances. Is this terminology
really justified?

Let us begin with the quantities D efx, D efp. The observables m ÃXf, m ÃPf, xÃf
commute, and can therefore be simultaneously determined with arbitrarily

high precision. Alternatively, one may determine the values of m ÃXf, m ÃPf without

perturbing xÃf. We may therefore envisage a procedure, in which one first
makes a highly accurate determination of the meter readings and then checks

the value of m ÃXf by making an (immediately) subsequent highly accurate

determination of xÃf. Suppose that one takes numerous copies of the system,

all prepared in the same state, performs this procedure on each of them, and

calculates the rms value of the differences m Xf 2 xf. Then, provided that the

verification of xÃf is carried out immediately after the determination of m ÃXf,
m ÃPf, the quantity which results will almost certainly be no larger than an

amount , D ef x.

We can equally well envisage a procedure in which one makes a second,

verificatory measurement of pÃf immediately after recording the meter read-

ings. If one repeated this procedure many times, then the rms value of the

differences m Pf 2 pf would almost certainly be no larger than an amount
, D ef p.

Suppose, now, that one has recorded the meter readings to be m Xf, m Pf.

What can be deduced about the likely state of the system? It is, of course,

impossible to check the values of both xÃf and pÃf to arbitrarily high precision.

It is, however, possible to counterfactually say that if one were to make a

single, immediately subsequent high precision measurement of xÃf, then the
result would typically differ from m Xf by an amount , D ef x. It is also possible

to counterfactually say, that if one were to make a single, immediately

subsequent high precision measurement of pÃf, then the result would typically

differ from m Pf by an amount , D ef p. There is therefore a well-defined sense
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in which it may justifiably be said that in recording the meter readings m Xf,

m Pf, one has simultaneously determined the final values of the position and

momentum of the system to accuracy 6 D ef x and 6 D ef p respectively.
The interpretation of the quantities D ei x, D ei p is less straightforward.

This is because the observables xÃi and m ÃPf do not commute. Nor do the

observables pÃi and m ÃXf [see equations (21) in the last section]. This means

that the act of making a precise determination of the meter readings m ÃXf, m ÃPf

precludes one from making a precise determination of the values of either

xÃi or pÃi. It follows that in the case of the quantities D ei x, D ei p we cannot carry
through an analysis analogous to the one given in the preceding paragraphs for

D ef x, D ef p.

There is an obvious physical reason why one might expect the concept

of retrodictive error to be more problematic than the concept of predictive

error. The effect of carrying out a measurement and recording the meter

readings is (as we have seen) to put the system into a state such that its final
position and momentum are confined, with high probability, to a localized

region of phase space. However, this is an effect produced by the measurement

process itself. If the uncertainties of the initial system state are large, then

the initial values of the position and momentum will be quite indeterminate.

In such a case the concept of retrodictive error does not really make sense.
At least, the concept does not make sense if it is defined in anything like

the classical manner.

Classically, one thinks of the retrodictive error as the difference between

the result of the measurement and the value which the quantity being measured

did take before the measurement was carried out. In quantum mechanics,

however, the quantity being measured may not have had a well-defined
initial value.

Nevertheless, there is at least one situation in which it is possible to

attach a meaning to the concept that is similar to the meaning which it has

in classical physics. In Section 1 we stated that one of the reasons that an

error principle is needed is to justify the assumption (which plays an essential

role in experimental physics) that it is normally possible to determine both
the position and momentum of a macroscopic object to within a very small

percentage error. Suppose that it is a measurement such as this which is in

question. Then it will usually be reasonable to assume that the initial system

state is a localized wave packet. In other words, the uncertainties D xi, D pi

may be assumed to be small. The purpose of the measurement is to determine

the mean values xi 5 ^ c | xÃi | c & and pi 5 ^ c | pÃi | c & . If the measurement is retrod-
ictively unbiased

^ c ^ f ap | m ÃXf| c ^ f ap & 5 xi

^ c ^ f ap | m ÃPf | c ^ f ap & 5 pi
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In view of equations (24) and (25) we then have

^ c ^ f ap | ( m ÃXf 2 xi)
2 | c ^ f ap & 5 ( D m Xf)

2 5 ( D xi)
2 1 ( D eix)2

(28)
^ c ^ f ap | ( m ÃPf 2 pi)

2 | c ^ f ap & 5 ( D m Pf)
2 5 ( D pi)

2 1 ( D eip)2

It follows that the process determines the values of xi, pi up to an uncertainty

of 6 ! ( D xi)
2 1 ( D eix)2 in the determination of xi, and 6 ! ( D pi)

2 1 ( D ei p)2

in the determination of pi. The quantities D ei x, D ei p represent the parts of

the total error which arise from the measurement process itself, as opposed

to the intrinsic uncertainties of the initial state. In other words, they represent

the experimental errors.

If the initial system state is not a localized wave packet, then the classical

or ordinary intuitive concept of retrodictive error does not apply. One should
realize, however, that this has nothing especially to do with the fact that

we are considering simultaneous measurements of position and momentum.

Exactly the same problem arises when interpreting the quantity D xmeasurement

defined by Braginsky and Khalili (1992) for single measurements of position

only. It is a simple consequence of the fact that quantum mechanical observ-

ables need not take determinate values. This feature of the quantum mechani-
cal theory of measurement is sometimes expressed by saying that we create

the value by the act of measuring it.

Although they are then not interpretable as errors in the classical sense,

the quantities D eix, D eip are still defined when the initial system state does

not take the form of a localized wave packet. Furthermore , they still play a
role in characterizing the ª goodnessº or ª faithfulnessº of the measurement.

Suppose, for instance, that the initial system state is a superposition of a

finite or countable number of well-separated, localized wave packets:

| c & 5 o
n

cn | x n &

In this expression | c & and the | x n & are all assumed to be normalized. Define

xin 5 ^ x n | xÃ| x n &

pin 5 ^ x n | pÃ| x n &

and

lX 5 min
n Þ m

| xin 2 xim |

lP 5 min
n Þ m

| pin 2 pim |

For the sake of simplicity assume that the states | x n & all have the same

intrinsic uncertainties s X, s P:
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s X 5 ! ^ x n | (xÃ2 xin)
2 | x n &

s P 5 ! ^ x n | ( pÃ2 pin)
2 | x n &

for all n. The assumption that the wave packets are well separated means
that s X , , lX and s P , , lP . We then have

^ x n | x m & ’ d nm

and

o
n

| cn | 2 ’ 1

Now surround each point (xin, pin) with a region 5n whose dimensions are

large compared with the intrinsic uncertainties s X, s P , but small compared

with the minimum separations lX, lP:

5n 5 {(x, p) P R 2: | x 2 xin | , dX, | p 2 pin | , dP}

where s X , , dX , , lX and s P , , dP , , lP. Suppose that we also have

D eix , , dX and D ei p , , dP . In view of (28), the function | ^ x, m X, m P | UÃ| x m

^ f ap & | 2 is then concentrated on the set R 3 5m. Hence

# R 3 5n

dx d m X d m p | ^ x, m X, m P | UÃ| x m ^ f ap & | 2 ’ d nm

Consequently

# R 3 5n

dx d m X d m P | ^ x, m X, m P | UÃ| c ^ f ap & | 2 ’ | cn | 2

In words: the probability that the final pointer positions will be in the vicinity

of the point (xin, pin) is approximately | cn | 2, provided that the rms errors of

retrodiction are sufficiently small.
This result may be regarded as a generalization of the following well-

known fact regarding measurements of a single, discrete observable AÃ. Let

| a & be the eigenstate of AÃwith eigenvalue a, and suppose that the system is

in the state

| c & 5 o
a

ca | a &

Suppose that one performs a perfectly precise measurement of AÃ. Then the
probability of recording the value a is | ca | 2. The analogy between this proposi-

tion and the result just proved lends some support to the suggestion that

processes of the kind described by Arthurs and Kelly may be regarded as

simultaneous measurements of noncommuting observables.
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Finally, let us consider the interpretation of the quantities D d x, D d p.

Suppose that the measurement is both retrodictively and predictively unbiased.

By an argument similar to the one leading to equations (28) we find

^ c ^ f ap | (xÃf 2 xi)
2 | c ^ f ap & 5 ( D xf)

2 5 ( D xi)
2 1 ( D dx)2

^ c ^ f ap | ( pÃf 2 pi)
2 | c ^ f ap & 5 ( D pf)

2 5 ( D pi)
2 1 ( D d p)2

where xi, pi are the expectation values of xÃi, pÃi, as before. The effect of the
measurement process on the system state is to leave the expectation value

of xÃ(respectively pÃ) unchanged, while increasing the variance by an amount

( D d x)2 [respectively, ( D d p)2]. There is thus a well-defined sense in which the

quantities D d x, D d p provide a numerical indication of the extent to which

the measurement disturbs the state of the system.

6. CONCLUSION

Does quantum mechanics allow for the existence of simultaneous mea-

surements of position and momentum? We can see no clear objection to the

use of the term ª measurementº to refer to the kind of process described by

Arthurs and Kelly. However, it must be admitted that insofar as the question

at issue is one of nomenclature, it probably does not have a once-and-for-
all right answer. Such questions are, in the end, a matter of taste.

What is not a matter of taste is the fact that processes of the kind

considered are of some importance in the field of quantum optics. This is

true irrespective of the name by which one chooses to describe them. If the

quantities introduced in this paper are to be of any interest, they must be

justified in the same way, in terms of their usefulness. Braginsky and Khalili
have shown that the relationship they derive is a useful tool in the analysis

of single measurements of xÃor pÃseparately. It seems not unreasonable to

suppose that the relationships derived in this paper may be no less useful in

the analysis of simultaneous measurements of xÃand pÃtogether. At the least,

they seem worthy of further investigation.

APPENDIX

In Section 3 we rely on a proposition which forms the basis of the

argument in both Arthurs and Kelly (1965) and Arthurs and Goodman (1988).

However, in neither case do the authors actually prove this proposition. Since

it is not entirely obvious, we give the proof here.

Proposition. Let *1, *2 be two Hilbert spaces and let AÃbe a (possibly

unbounded) linear operator defined on the product space *1 ^ *2. Let $
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# *1 ^ *2 be the domain of AÃ. Let | f & be a fixed vector P *2. Suppose

that *1 ^ | f & # $, and suppose also that

^ c ^ f | AÃ| c ^ f & 5 0 (A1)

for all | c & P *1. Then

^ c ^ f | AÃ| c 8 ^ f & 5 0

for all | c & , | c 8 & P *1.

Proof. The result is proved in essentially the same way as (for example)

Proposition 2.4.3 in Kadison and Ringrose (1983). Given arbitrary | c & , | c 8 &
P *1 we have the identity

^ c ^ f | AÃ| c 8 ^ f &

5
1

4
( ^ ( c 1 c 8) ^ f | AÃ| ( c 1 c 8) ^ f &

2 ^ ( c 2 c 8) ^ f | AÃ| ( c 2 c 8) ^ c &

2 i ^ ( c 1 i c 8) ^ f | AÃ| ( c 1 i c 8) ^ f &

1 i ^ ( c 2 i c 8) ^ f | AÃ| ( c 2 i c 8) ^ f & )

Using equation (A1), we deduce

^ c ^ f | AÃ| c 8 ^ f & 5 0
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